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The response of turbulent boundary layers to sudden changes in surface rough- 
ness under adverse-pressure-gradient conditions has been studied experimentally. 
The roughness used was in the ‘d’ type array of Perry, Schofield & Joubert 
(1969). Two cases of a rough-to-smooth change in surface roughness were con- 
sidered in the same arbitrary adverse pressure gradient. The two cases differed in 
the distance of the surface discontinuity from the leading edge and gave two sets 
of flow conditions for the establishment and growth of the internal layer which 
develops downstream from a change in surface roughness. These conditions were 
in turn different from those in the zero-pressure-gradient experiments of Antonia 
& Luxton. The results suggest that the growth of the new internal layer depends 
solely on the new conditions at  the wall and scales with the local roughness length 
of that wall, Mean velocity profiles in the region after the step change in rough- 
ness were accurately described by Coles’ law of the wall-law of the wake com- 
bination, which contrasts with the zero-pressure-gradient results of Antonia & 
Luxton. The skin-friction coefficient after the step change in roughness did not 
overshoot the equilibrium distribution but made a slow adjustment downstream 
of the step. Comparisons of mean profiles indicate that similar defect profile 
shapes are produced in layers with arbitrary adverse pressure gradients at  posi- 
tions where the values of Clauser’s equilibrium parameter /3 (=  6*7;ldp/d~) are 
similar, provided that the pressure-gradient history and local values of the 
pressure gradient are also similar. 

1. Introduction 
Theoretical and experimental work on the effects of discontinuous changes in 

boundary conditions on the development of turbulent shear flow has a relatively 
long history. Some of this work has been stimulated by practical problems 
(especially in the field of micrometeorology ) but probably its experimental 
attraction lies in the proposal, advanced by Clauser (1956), that the problem 
appears to offer the possibility of understanding the internal exchange mecha- 
nisms of sheared flow. Both conduit and boundary-layer flows have been studied 
with perturbations applied at  the wall, to the free stream and in the inner and 
outer regions of the layer itself. A general review of these results is available in 
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Tani (1968). So far the work has had limited success in revealing mechanisms of 
turbulent exchange. Even in the more straightforward task of defining the 
response of shear flows to perturbations, disagreements between results are not 
uncommon (for instance, on the validity of the universal law of the wall imme- 
diately after a small perturbation). 

Some recent work by Antonia & Luxton (1971a, 1972) presents the most 
detailed and comprehensive measurements of a perturbed shear flow that are 
available. The problem studied was the development of a turbulent boundary 
layer in zero-pressure-gradient flow on a wall containing a sudden or step change 
in roughness. They concluded that to study these flows was essentially to study 
the development of the new internal layer which grows downstream of a step 
change in roughness-/- as flow outside this internal layer was unaffected by the 
6ew surface condition except for a small streamline displacement. Their papers 
are mainly concerned therefore with a detailed analysis and description of the 
growth and flow structure of the internal layer. Both the rough-to-smooth and 
smooth-to-rough case were considered. However, as their experiments were 
limited to one example of each under zero-pressure-gradient conditions, flow 
variables which dictated the growth of the new internal layer could not be dis- 
tinguished. From a consideration of their results they suggested that the following 
variables may be important: (i) the flow structure upstream of the step, (ii) the 
structure of the flow downstream of the step but outside the new internal layer, 
(iii) the magnitude of the roughness step and (iv) the nature of the roughness 
before the step. 

The starting point of the present experiments was to determine which (if any) 
of these variables determined the growth of the new internal layer. This was 
done by observing the growth of the internal layer in flows with the same type 
of wall discontinuity but with different values for the above variables. The flow 
conditions were also selected to be significantly different from those of the 
experiments of Antonia & Luxton. 

The experiments were restricted to boundary-layer flows over a rough-to- 
smooth step, a case that has been studied by Taylor (1962) in a weak favourable 
pressure gradient, as well as by Antonia & Luxton. To obtain flow structures 
(both before the step and outside the internal layer after the step) which differed 
significantly from those of previous studies, flows in a strong adverse pressure 
gradient were investigated. 

The roughness before the step was in a ‘ d ’  type array to give a roughness 
different in nature from the more usual ‘ k’ type or sand-grain roughness used by 
Antonia & Luxton and Taylor. Physically a ‘ d ’  type rough wall is characterized 
by deep closely spaced grooves transverse t o  the flow (as illustrated in figure 1). 
Flow-visualization studies by Perry et al. (1969) and Schofield (1969) have shown 
that the flow within these grooves is largely self-contained, being separated from 
the outer flow by a shear layer across the top of the cavity. The outer flow there- 
fore rides over the crests of the roughness elements relatively undisturbed with 
little eddy shedding from the rough wall into the main flow. Conversely, at  a 
‘k’ type rough wall there is strong interaction between flow over the crests of 

t ‘Step change in roughness’ will be abbreviated t o  ‘step’ throughout this paper. 



Turbulent boundary layer with change in surface roughness 575 

the elements and flow between the elements, resulting in strong eddy shedding 
into the main flow. Thus turbulence generated by the wall is significantly different 
for the two types of roughness (see Wood & Antonia 1974; Antonia & Luxton 
1971~).  This difference in surface flow behaviour is reflected in the functional 
dependence of the roughness function in Clauser’s (1954) form of the logarithmic 
law of the wall. viz. 

where K and A are universal constants (taken here as 0-40 and 5.1), u the mean 
velocity, y the distance from the origin, u, = (ro/p)*, ro the wall shear, p the 
fluid density, v the fluid kinematic viscosity and Au/u, the roughness function. 

For fully rough flow over a ‘k’ type wall Clauser showed that 

Au 1 ku, _ -  - -log- +D, 
U, K Y 

where k is a length representative of the roughness geometry (usually taken as 
the height) and D is a constant for a particular roughness. However (2) is not 
valid for ‘ d ’  type roughness (Perry et al. 1969) as the dependent length scale in 
the roughness function is, for this case, the error in the origin of the mean velocity 
profi1e.t An important property of flow over a ‘d’  type rough wall is that the 
error in the origin increases with development distance whereas it is a constant 
proportion of the roughness height for ‘k’ type roughness.$ This behaviour was 
used in the present experiment to vary the magnitude of the perturbation applied 
to the layer. By simply placing the leading edge of the smooth wall at different 
distances from the leading edge of the flow the magnitude of the perturbation 

t The error E in the origin of a mean velocity profile is the distance below the crests of 
the roughness elements that the effective origin of the mean profile must be located for 
the usual similarity laws to apply (see Moore 1951). The distance y in (1) must therefore 
be measured from this effective origin (?JT in figure 1) .  

$ Thus (2) can be written more generally as 

Au 1 EU, _ -  - -log- + E, 
U, K V 

which applies to both ‘k’ and ‘ d ’  type roughness. 

(3) 
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Nominal Error in 
roughness Type of origin at 

Roughness Length of height, k rough- step, es (ss/Bs) 
Layer distribution rough wall (in.) ness (in.) x lo2 

- - R Uniformly x = 0.8-18.0ft 0.5 ‘ d ’  

S Uniformly Nil 0 

A Rough to x = 0.8-11.5 f t  0.5 ‘ d ’  0.36 4.6 

rough 

smooth 

smooth 

smooth 

- - - 

B Rough to x = 8.0-9.6 f t  0.5 ‘d ’  0.23 3.8 

Antonia & Smooth to x = 8.0-16.0 ft 0.125 ‘lc’ 0 0 

Antonia & Rough to z = 8.0-12.Oft 0.125 ‘ k ’  0.0lO.t 3.5 
Luxton (1971 a)  rough 

Luxton (1972) smooth 

t Value of ES not given in Antonia & Luxton (1972). This estimate was provided by 
Dr Antonia in a private communication. 

TABLE 1.  Wall roughness data. ES = error in origin at step, 13’s = total boundary-layer 
thickness a t  step, x = distance from the leading edge of the plate 

at the step could be varied without varying the size of the roughness elements. 
Two positions of the step were investigated in the same adverse pressure gradient. 

After a perturbation in zero-pressure-gradient flow the deviation from and 
return to equilibrium conditions can be readily assessed by reference to well- 
established properties of an undisturbed zero-pressure-gradient layer. For the 
present adverse-pressure-gradient flows it was necessary to have data from two 
reference flows: one over a uniformly smooth wall, the other over a uniformly 
rough wall but both in the same pressure gradient as was used in the perturbed 
flow tests. 

2. Experiment 
Previous publications (Perry 1966; Perry et al. 1969) have fulIy described the 

apparatus used in these experiments. The test boundary layers were formed on 
a flat plate 20 f t  long and 4 f t  wide which spanned the closed working section 
of a low turbulence, return-circuit wind tunnel. The plate was inclined at  an 
angle of attack to the approaching flow such that a strong adverse pressure 
gradient was applied to its working face. 

Details of the four roughness distributions used in these experiments are given 
in table I. Exactly the same roughness geometry was used for series A and B 
(layers over a wall containing a rough-to-smooth step change in roughness) as 
for series R (a reference layer on a uniformly rough wall). Layer X was a reference 
layer on a uniformly smooth wall.? The roughness geometry was two-dimensional 
and fabricated by attaching rectangular slats of wood to the wall, transverse 

Layer-S resdts are Perry’s, and have been previously reported in connexion with 
other work (Perry 1966). 
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FIGURE 2. Pressure gradient and positions of measuring stations. - 0-, smooth-wall 
reference layer (series S) as recorded by Perry (1966); __ , rough-wall reference layer 
(series R )  and layers over a step (series A and B)  ; , pressure gradient for series S ad- 
justed for different reference-probe position. 

to the flow. The slats were closely packed to give a roughness pattern with a 
pitch-to-height ratio of 1-8 which was the same as the ‘d’ type pattern used by 
Perry et al. (1969). The crests of the roughness elements were aligned to have 
the same level as both the smooth leading edge of the plate and the smooth 
wall after the step in series A and B (see figure 1). 

The pressure gradients for series A ,  B and R were identical while the pressure 
gradient for series S was closely comparable after allowance for a different 
reference-probe position had been made (see figure 2). 

Mean velocity profiles were measured with a flattened Pitot tube? and sepa- 
rate static tube. Detailed profiles were measured for each of the four series at 
up to twelve stations spaced along the plate. All profiles measured on rough 
walls were in the ‘ fully rough ’ flow regime. 

Skin-friction coefficients for the rough-wall flows$ were determined by a 
method which analyses the momentum balance of a control volume around a 
single roughness element. This method requires detailed measurements of the 
pressure distributions on the vertical faces of a single roughness element and of 
the longitudinal pressure gradient in the layer. Details of the analysis and dis- 
cussion of the assumptions involved in it are given in Perry et al. (1969) and 
Antonia & Luxton (1971 a). The shear stress derived applies to a streamline some 
(small) distance above the crests of the elements but was used in the data reduc- 
tion of Perry et al. as the true tangential shear of the layer. Their final results 
showed good internal consistency. However Reynolds-stress measurements by 
Antonia & Luxton (1971 a) indicated that the shear stress derived by the method 
is accurate for a streamline not too close to the crests of the elements and hence 
may not be the true tangential stress. A direct comparison between the shear 

t The opening of the probe had a wide rectangular form with dimensions 0.028 x 0.15 in. 
$ Skin-friction coefficients for series S were taken directly from Perry (1966). 

37 F L N  70 
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stress given by the control-volume method and the wall shear given by 
well-established methods is described in Perry et al. For zero-pressure-gradient 
flow over a wall with uniform ‘k’ type roughness they found differences of the 
order of 10% between stresses given by the control-volume method and the 
momentum-thickness distribution of the layer. 

Perry et ab. (1969) also illustrated a simple method for determining both the 
roughness function and the error in the origin of a rough-wall mean velocity 
profile, which requires a predetermined skin-friction coefficient and assumes the 
existence of a universal logarithmic distribution of mean velocity near the wall. 
It was applied to the present rough-wall profiles using the skin-friction coeffi- 
cients determined by the control-volume method. Values thus obtained for the 
error in the origin of the layer showed the anticipated increase with development 
distance. The magnitudes of the error in the origin at the step for the two pre- 
sent series ( A  and B) were therefore significantly different both from each other 
and from that in the experiment of Antonia & Luxton (1972). Values of para- 
meters are listed in table 1. 

3. Results 
Mean velocity profiles after a step are compared in figure 3 with corresponding 

profiles for the reference layer on a uniformly rough wall. The velocities are 
plotted against a stream function defined by 

Differences between the profiles of each pair appear to be small and in the outer 
regions of the profiles the agreement is almost within experimental accuracy. 
The correlation displayed by these profiles suggests that the longitudinal mean 
velocity in the outer regions of a 1ayer:over a step develops (at least initially) 
without knowledge of the new wall conditions. This has been noted in nearly all 
previous work on flows over wall perturbations (Tani 1968). However the 
response of the outer flow in this case appears to be slower than that in the 
rough-to-smooth, zero-pressure-gradient flow of Antonia & Luxton. At the sta- 
tion furthest from the step (station B 3 t )  differences between the perturbed and 
reference profiles are still very small. Antonia & Luxton’s profiles at  a comparable 
distance downstream show significant development towards a new self-preserving 
form. 

Antonia & Luxton’s results for a rough-to-smooth step gave streamlines that 
deflect towards the wall after the step, which is consistent with the analysis by 
Townsend (1965) of zero-pressure-gradient flow over a step. The streamline 
displacement is a consequence of velocity increases in the region of accelerated 
flow near the walI. The present flows differ considerably from the case analysed 
by Townsend. The whole flow is being decelerated by the adverse pressure 
gradient and at  a very rapid rate in the region after the step, where the layer is 
approaching separation. The (small) acceleration due to the new wall conditions 

t At a distance of twelve layer thicknesses downstream of the step. 
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FIGURE 3. Smooth-wall mean velocity profiles after the step (circles) compared with 
rough-wall reference profiles (crosses) at the same situation. For clarity, experimental 
points near the wall have been omitted in all profiles. 

after the step has a very minor effect on this gross behaviour and the streamlines 
continue to diverge rapidly from the wall. The positions of the streamlines for 
flow after a step were practically indistinguishable from those of the reference 
streamlines for flow over a uniformly rough wall. 

3.1. Internal layer 
The new wall conditions after the step abruptly change the wall shear stress and 
initiate a new flow structure, whose height grows within the boundary layer 
with increasing development distance. Antonia & Luxton inferred the height 
Si of this new internal layer by two methods. The physically more realistic 
method determined a position of ‘merging ’ by superimposing mean velocity 
profiles obtained at closely spaced streamwise stations. In  the present experi- 
ment the validity of this method was doubtful as the outer profile shape was 
changing rapidly in the adverse pressure gradient. In  addition the profile 
stations were not closely spaced. For the present data ‘merge’ points were 
inferred by superimposing a profile after a step and the corresponding profile 

37-2 
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Y (in.) 

FIGURE 4. Examples of determination of ‘merge’ positions. 0, profile after step; -, 
rough-wall reference profile. For clarity, experimental points near the wall have been 
omitted from both profiles. 

from the rough-wall reference layer. Examples are shown in figure 4, where 
the Antonia & Luxton procedure of using a half-power scale for y has been 
retained to expand the profile in the region of interest. As the two profiles 
merge asymptotically the accuracy of Si is only fair in both these and Antonia & 
Luxton’s data. 

Antonia & Luxton fitted a simple power law to their data and obtained 
Si cc z%43 for the rough-to-smooth step, which differed from their previous 
result cc x%’~ for a smooth-to-rough step. To compare data from different 
experimental conditions the appropriate non-dimensional form given by Towns- 
end (1965) must be used. Townsend’s analysis for zero-pressure-gradient flow 
over a step showed that the modified flow after a step scales with the (local) 
equivalent roughness length x ,  defined by expressing the logarithmic law of the 
wall [(I) and ( 2 )  or (3)] as 

u/u, = K-llog (y/z). (4) 

Thus for flow over a ‘it7 type rough wall combination of (I) ,  ( 2 )  and (4) gives 
for the equivalent roughness length 

x = kexp[~(D-A)],  ( 5 )  

or more generally, using (l), (3) and (4), 

x = Eexp [ K ( E - A ) ] ,  ( 6 )  
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FIGURE 5. Growth of internal layer after a step change in roughness. A, series A ( M  = 5.0 
to 5.3); 0, series B ( M  = 4.8 to 5.3); 0, Antonia & Luxton (1971a), smooth-to-rough 
step ( M  = -4.6 to - 5.1); 0 ,  Antonia & Luxton (1972), rough-to-smooth step ( M  = 3.6 
to 4.8); - , equation (8) ; - - -, S,/z cc ( Z S / Z ) ~ ’ ~ ~ ;  - * - , Townsend (1965). 

which applies to both ‘Ic’ and ‘ d 7  type rough walls. The corresponding expression 
for smooth-wall flow is 

Figure 5 shows the growth rates of the internal layers in the Antonia & Luxton 
smooth-to-rough experiment, the present experiments and the Antonia & 
Luxton rough-to-smooth experiment, with Si and x, non-dimensionalized using 
local equivalent roughness lengths determined from ( 5 ) ,  (6) and (7) respectively.? 

The values of z for the smooth wall for the rough-to-smooth data of Antonia 
& Luxton are based on values of skin friction inferred from the slope of the semi- 
logarithmic portions of the mean velocity profiles. Although the profiles did not 

t There is of course an inconsistency here in that the validity of the universal logarithmic 
law is assumed whereas the Antonia & Luxton results show that such inner-layer simi- 
larity is probably not valid for their flows. However the above procedure was adopted by 
Antonia & Luxton (1971a) to determine z and the errors in such estimates of the wall 
length scale are unlikely to be large. It does mean that the accuracy of Si, which is based 
on fairly inaccurate estimates of the ‘merge’ point, is further degraded by expressing it 
as S&. This problem does not apply to the present data as they are shown to agree with 
the universal law of the mall in 33.2. 

z = v/[u,exp (d)]. (7) 
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agree with the universal logarithmic law of the wall these values of skin friction 
are preferable to the Preston-tube results as for the majority of the profiles the 
Preston tube used by Antonia & Luxton extended beyond the outer limit of 
the semi-logarithmic distribution.? For the rough-wall data the value of D 
[equation (2)] for the ‘ k ’  type wall was taken from Antonia & Luxton (1971a) 
and the value of E [equation (2)] for the ‘ d ’  type wall from Perry et al. The 
correlation of the three subsets of data with the line of best fit shown in figure 5 
is reasonably good. This is particularly encouraging in view of the wide range 
of parameters over which the data extend. The roughness step parameter Jl, 
defined by Townsend as M = log (zl/x,) (zl = roughness length scale before the 
step, z2 = roughness length scale after the step), varies within the data from 
- 5.1 to -k 5.3. The line of best fit is given by 

(8) 

to which Si/z K xs/z is an approximation within experimental accuracy. Towns- 
end’s expression for the growth of the internal layer, which written in a form 
similar to (8) is 

loglo ( S J Z )  = 1.03 log,, (x,/z) - 1.02, 

is also plotted in the figure. The validity of (9) is restricted in several important 
respects. The restrictions exclude flow at small xs/z and in non-zero pressure 
gradients. Antonia & Luxton (1971 a) have compared their smooth-to-rough 
results with (9) and explained the lack of agreement by the fact that Townsend’s 
analysis requires inner-layer similarity throughout the flow while their results 
show this similarity to break down after the step. The agreement between 
Townsend’s theoretical curve and data for the other experiments shown in 
figure 5 is also poor. However in all cases the flow did not conform to the case 
analysed. In  both of Antonia & Luxton’s flows inner similarity apparently did 
not apply after the step and the present experiment measured flow in a strong 
adverse pressure gradient. In  spite of this, the overall trend of Townsend’s 
prediction over five orders of magnitude in x,& is correct and the discrepancies 
not very much greater than the experimental scatter in the data points. 

The line fitted by Antonia & Luxton to their data for smooth-to-rough flow 
is shown in figure 5 and is seen to fit the data rather better than (8). Similar lines 
could be fitted through each of the other two subsets of data which would corre- 
late each group better than (8). If such lines were a correct description of the 
growth rates for each set of experimental conditions then factors of the type 
suggested by Antonia & Luxton would have to be taken into account in des- 
cribing internal-layer growth in flow over a step. However, in the opinion of 
the present author the experimental conditions represented by the data in 
figure 5 are so different that the correlation with (8) is sufficiently good to support, 
the view that the internal-layer growth is simply dependent on the nature of the 
new wall alone and scales with the local equivalent roughness length of that wall. 

I am indebted to Dr Antonia for supplying much original data from their experiments, 
some of which were not given explicitly in their papers. 
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3.2. Inner-$ow similarity and wall shear 

Antonia & Luxton concluded that the universal logarithmic law of the wall 
did not apply in zero-pressure-gradient flow after a step change in roughness. 
This conclusion was based first on turbulence measurements, which showed 
that the wall region was not in equilibrium in the sense described by Townsend 
(1961), and hence that there was little physical basis to support the existence 
of the universal law, and second, on the fact that, although mean velocity pro- 
files displayed logarithmic distributions, they were not ‘universal’ as the con- 
stants implied by the distributions varied significantly from the accepted 
‘universal ’ values. This result differed from previous work. Universal logarith- 
mic distributions of velocity after a step were reported in two previous experi- 
ments that were similar to the cases studied by Antonia & Luxton (Taylor 1962; 
Makita 196S-f). Universal distributions were also found in flows subjected to 
other types of sudden perturbation (Bradshaw 1969, sudden application of 
pressure gradient; Bradshaw & Ferriss 1965, sudden removal of pressure gra- 
dient). Other perturbed flows in which universal wall similarity was not rapidly 
established were characterized by the generation of a significant separation 
region by the perturbation (Tillrnann 1945$ ; Bradshaw & Wong 1972; Antonia & 
Luxton 1971b). However, as the results of Antonia & Luxton are the most 
detailed and extensive available, their conclusion of the breakdown of wall 
similarity after a step must be regarded as probably correct for at  least the zero- 
pressure-gradient case involving ‘ k ’ type roughness. 

The inner regions of the present profiles are plotted in semi-logarithmic co- 
ordinates in figure 6 . s  They are compared with the universal law of the wall 
[equation (l)]  expressed in Clauser’s (1954) form: 

where cj is the local skin-friction coefficient. The results show good agreement 
with the universal form for profiles as close as two layer thicknesses from the 
step (profile B1). The outer extent of the agreement varies between 0.1 and 0.12 
of the total layer thickness. Similar heights were found in corresponding profiles 
of the undisturbed reference layers. 

The validity of mean flow wall similarity in the present flows after the step is 
probably a consequence of the ‘ d ’  type roughness before the step. As discussed 
previously the turbulence structure near a ‘ d  ’ type rough wall does not differ 
greatly from that near a smooth wall (Wood & Antonia 1974). Thus transition 
from a ‘ d ’  type rough wall to a smooth wall requires only a minor adjustment in 
the turbulence structure and gives rapid establishment of wall similarity. This 
contrasts with flow over a ‘ k’ type rough wall, where the turbulence structure is 
quite different (Antonia & Luxton 1971 c) from smooth-wall turbulence. 

step in fully developed channel flow. 
7 Some results by Makita are quoted in Tani (1968). Makita studied a rough-to-smooth 

$ See discussion in Coles (1968, p. 15). 
5 The profiles have not been corrected for probe displacement or turbulence effects. 
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FIGURE 6. Inner-flow profiles after a step change in roughness. -, equation (9). 

Variations in the skin-friction coefficient for the two layers over a step are 
compared with those of the two reference layers in figure 7. It appears that the 
wall shear attains, but does not overshoot, the equilibrium distribution imme- 
diately after the step. This result contrasts with the behaviour in zero-pressure- 
gradient and ducted flows noted by Tani (1968) and Coles (1968) in their review 
articles. Both concluded that overshooting of the equilibrium value by the wall 
shear was a feature of sheared flows after a wall discontinuity although the 
degree of overshoot was small in the absence of complete separation and re- 
attachment. The present data also show a slow divergence from the equilibrium 
distribution after a step, rather than the slow convergence demonstrated by 
Coles for the zero-pressure-gradient data of Klebanoff & Diehl (1951) and 
Tillmann (1945). The skin-friction coefficients of both perturbed layers show a 
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FIGURE 7. Distribution of skin-friction coefficient (a) as a function of distance and ( b )  as 
a function of momentum-thickness Reynolds number. A, series A ; 0, series B; - - -, 
Ludwieg & Tillmann skin-friction formula. 

correlation with momentum-thickness Reynolds number which is well described 
by the standard Ludwieg & Tillmann skin-friction formula. As Bradshaw & 
Wong (1972) have noted, if the discontinuity does not destroy wall similarity 
then a major change in profile shape is required to invalidate the relationship 
between the wall shear stress and the integral thickness parameters, which is 
expressed in formulae of the Ludwieg & Tillmann type. 

3.3. Projle parameters and equilibrium criteria 
Figures 3 and 4 showed that the outer mean flow profiles of series A and B are 
very similar to corresponding profiles of series R. These similar outer profiles are 
matched in the two types of layers to inner layers in which the wall shear stress 
differs by almost an order of magnitude. Coles’ (1956) wake hypothesis relates 
the outer flow to the wall shear by the expression 

where f and o are functions tabulated by Coles (1953, 1956), II is the wake 
strength factor and 8, the Coles’ total-layer thickness. The present data were 
seen as presenting a demanding test of this hypothesis as the same outer flow had 
to be correlated with two divergent values of the velocity scale u, with only one 
adjustable constant (IT). Coles (1968) recognized that flow over a wall dis- 
continuity is a case in which (10) often gives inaccurate profile descriptions. 
However the data from which he drew this conclusion were restricted, and had 
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FIGURE 8. Wake components of the relaxing profiles. -, equation (1 1). 

small wake components except in the immediate vicinity of the perturbation. 
By contrast the boundary layers of series A and B have large well-defined wake 
components throughout. 

Wake functions deduced from profiles in the reference layers (R and 8) show 
excellent agreement with the Coles' wake function 

w(y/8,) = 2 sin2 (tny/8,), (11) 

as do most data for adverse-pressure-gradient layers (Coles 1968). Somewhat 
surprisingly, wake components of profiles after a step (series A and B )  show 
almost the same excellent agreement (figure 8), which demonstrates once 
again the wide applicability of this empirical relationship. From the limited 
information available, it is difficult to explain the different behaviour of these 
data from those considered by Coles. A significant factor may be that the length 
scales associated with the wall perturbations in these tests were a considerably 
smaller fraction of the layer height than those for the data analysed by Co1es.t 

The variation of the wake strength factor for series A and B is compared with 
t,he reference-layer distributions in figure 9. Immediately after the step, Il has 
a value which corresponds closely to that for flow over a uniformly smooth wall 
at the same station. Further downstream of the step, the values of IT diverge 

t Similar comments would apply to the Antonia & Luxton flows. However a valid 
comparison of their wake components is impossible owing t o  the failure of the universal 
law of the wall in the inner flow. 
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FIGURE 9. n 218. x. -, reference layer S ;  - - , reference layer R ;  
A, series A ; , series B. 

from the distribution for a uniformly smooth wall in a manner consistent with 
the similarity of outer profiles between layers and the wall shear-stress distri- 
butions. 

Equilibrium considerations. In  an undisturbed zero-pressure-gradient layer at  
high Reynolds number the Clauser profile parameter 

is constant and the flow is self-preserving. Perturbations applied to a zero- 
pressure-gradient layer cause G to vary from this constant value with a slow 
asymptotic return to equilibrium as the layer relaxes. 

For layers with non-zero pressure gradients the relationship between G and 
,8 (=  8*7,y1dp/dx) for all possible self-preserving layers has been the subject of 
theoretical treatments by Townsend (1961) and Mellor & Gibson (1966). An 
empirical relation representing a synthesis of theory and experimental results 
has been given by Nash (1965): 

G(p) -- 6.1(,8+ 1.8l)i- 1.7. (12) 

If the locus of (G,,8) for a boundary layer in an arbitrary adverse pressure 
gradient coincides with (12) then the layer passes through a series of self- 
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preserving states during its development. This type of flow could be termed 
‘locally self-preserving ’. Experimental results analysed by Nash suggest that 
for layms in which dp/dx > 0 departures from (12) are small, and this is supported 
by Bradshaw’s (1969) results. Conversely, results for layers in which @/dx < 0 
diverge rapidly from (1 2). Rotta (1 962) analysed some unpublished measure- 
ments by Tillmann for which dp/dx was first positive and then negative. He 
concluded that after a maximum in p the local value of G depended on the 
history of p. 

The variation of G and p for the four present layers is shown in figure 10. 
Results for the two reference layers (in which dB/dx > O t )  deviate little from 
(12) and the layers are therefore (approximately) ‘locally self-preserving ’. 
Results for the two perturbed layers show a similar behaviour and presumably 
these layers are also locally self-preserving. Now in the present flows the severity 
M ( = log z,/zz) of the step change in roughness had values similar to those in the 
Antonia & Luxton (1972) flow (see figure 5) but whereas results for Antonia & 
Luxton’s zero-pressure-gradient flow deviated substantially from self-preser- 
vation after the step the only effect on the present flows was a rapid increase in 
G (and p). The obvious interpretation of this evidence is that wall perturbations 
of a severity sufficient to destroy self-preservation in zero-pressure-gradient 
flow, when applied to adverse-pressure-gradient layers, do not destroy their 

t Except between the last two profiles of the rough-wall reference layer (El1 and R12), 
where dp /dx  is slightly less than zero. 
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locally self-preserving development. Or alternatively wall perturbations have 
little effect on locally self-preserving development of adverse-pressure-gradient 
layers. However it could be that this particular experiment does not isolate the 
effect of wall perturbations on local self-preservation. The use of a rough-to- 
smooth step in an adverse-pressure-gradient flow dictated that dpldx (and M )  
remained positive across the step and as this is the empirical criterion for locally 
self-preserving flow deduced by Nash, it is perhaps not surprising that the layers 
showed only small deviations from (12). To separate the effects o f  pressure 
gradient and wall perturbations a useful experiment would be consideration 
of the case of a smooth-to-rough step in an adverse-pressure-gradient layer, 
where dpldx would be sharply negative after the step. 

Velocity-defect s h p e .  Clauser’s proposal of one-parameter families o f  mean 
velocity profiles runs into difficulties in layers where pressure-gradient forces 
dominate throughout. The limiting case of such layers is the self-preserving 
layer generated by Stratford (1959), in which the wall shear stress was approxi- 
mately zero throughout. This problem and related questions on the role of 
pressure gradient in deciding the profile shape for flows with large p has been 
the subject of proposals by Mellor & Gibson (1966) and McQuaid (1966). 

Comparisons among the present set of four layers approaching separation 
in the same pressure gradient but with different wall shear histories offer some 
insight into the relative importance of pressure gradient and wall shear in deter- 
mining defect profile shape. Pairs of profiles from different layers but with 
closely similar values of /3 were selected for comparison. The data were found 
to contain eight pairs of profiles for which the difference in ,8 between the two 
profiles was less than 10%. Table 2 lists values of flow parameters for these 
profiles. The eight pairs of profiles have been divided into two groups. 

In the first group, the profiles of each pair have the same shape when plotted 
in defect co-ordinates (figure Ila). The agreement between the two profiles 
deteriorates slightly but progressively from pair I to pair IV and this is matched 
by a slight but progressive disparity in /I’ agreement between the profiles of the 
pairs. An interesting feature of this group is the relative upstream variations of 
/3 and wall shear. In  all four cases the profiles of each pair had grossly different 
histories of these two parameters. L4pparently /I’ history and wall shear history 
has had little influence in determining the defect shape of these profiles. 

In the second group of profiles, values of ,!3 are matched in each pair, with a 
precision similar to that for the first group. The difference in ,8 values for each 
pair increases slightly from pair V to pair VIII. In  this case however, the profiles 
of each pair are markedly different when plotted in defect co-ordinates (figure 
I1 b) .  A significant difference evident between the two groups is that in the first 
group the local values of the pressure gradient dpldx and the pressure-gradient 
history are similar, whereas in the second group they are not. If we accept 
Rotta’s (1962) assertion that the local magnitude of the wall shear has little 
influence on a profile’s velocity-defect shape, then the evidence suggests that 
similar defect profile shapes are produced in layers at similar local values of p, 
provided that both the history and local values of the pressure gradient are 
similar. It may be that only one of these conditions (in addition to p similarity) 
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Profile 
number 

(see 
figure 1) 

and 
symbols 
used in 

figure 1 1  

First group 

I B 3  0 
s 9  0 

I1 A 3  0 
810 . 

I11 A 2  0 
s 9  0 

IV B1 0 
S 6  0 

Second group 

v s 2  . 
R7 0 

VI 54  . 
R11 0 

VII s 3  . 
R 9  0 

VIIIS4 . 
R12 0 

Local values 
Parameter history 

P G 

43.5 41.89 
45.4 43.18 

57.5 53.72 
61.2 54.48 

49.0 46.43 
45.4 43.18 

15.7 23.91 
14.0 21-58 

3.30 10-53 
3.20 11.33 

8.85 16.32 
9.25 21.88 

4.77 12.65 
4.48 12.23 

8.85 16.32 
7.18 18.41 

Similar 

Similar 

Similar 

Similar 

0.255 0.34 Very Very 
0.244 0.322 different different 

0.193 Very Very 
0.197 ::it} different different 

0-255 0.30 Very Very 
0.244 0.321 different different 

0.633 0.72). D. Very 
0.455 0.80j lfferent different 

1.78 
0.633 

0.908 1.12 
0.255 1.55) 

1.19 
0.40 

0.908 1.12 
0.193 1.80) 

Similar 

Similar 

Very 
similar 

Different 

Very 

Very 

Very 

different 

different 

different 

Different 

very 
different 

different 

different 

different 

Very 

Very 

Very 

TABLE 2. Summary of profile parameters 

is necessary but further evidence is required to resolve the matter. Evidence 
presented by Rotta (1962) of different profile shapes generated at  the same local 
value of p but with different j3 histories is not necessarily in disagreement with 
the present proposal. However as pressure-gradient details for the data were 
not published this cannot be tested. 

4. Conclusion 
(i) In  the present experimental investigation of turbulent boundary layers 

approaching separation in a strong adverse pressure gradient, it  is not surprising 
to find that pressure-gradient forces modify the response of the layer to a wall 
perturbation. What is perhaps instructive is a consideration of those features 
of the response which are unaffected by the application of an adverse pressure 
gradient to the flow. The central feature of flow over a step change in roughness 
is the generation of a new internal layer downstream of the step. The height 
of this new internal layer appears to depend on the nature of the new con- 
ditions at  the wall as it scales with the local roughness length of that wall. 
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In  non-dimensional terms the internal-layer height is approximately propor- 
tional to distance from the step. 

Universal logarithmic distributions of mean velocity were established down- 
stream of the step in spite of the severe discontinuity in surface conditions and 
strong pressure gradients. Establishment of wall similarity after the step 
appears to have been very rapid. At a distance of two layer thicknesses down- 
stream of the step the extent of wall similarity normal to the wall was comparable 
with that in a corresponding unperturbed layer. 

The wall shear stress implied by the logarithmic distributions showed an 
unusually orderly adjustment to the new wall conditions. Immediately down- 
stream of the step the wall shear attained the equilibrium value with little or 
none of the overshooting displayed by similar flows on flat plates or in ducts. 
Downstream of the step the wall shear slowly diverged from the distribution for 
a corresponding flow on a uniform smooth wall. 

In zero-pressure-gradient flow it has been observed that the outer layer reacts 
very slowly to changes in wall conditions. It is therefore not surprising to find 
in adverse-pressure-gradient flow that the outer layer, which is dominated by 
pressure-gradient forces, responds even more slowly to a change in wall conditions. 
So slow is this response that mean velocity profiles of the perturbed layer are 
very similar to corresponding profiles from a reference layer on a uniformly 
rough wall. The unusual structure obtained by matching this ‘rough wall’ 
outer layer to a wall layer of greatly reduced shear can still accurately be 
described by the Coles wall-wake combination. 

(ii) The variation of Clauser’s profile parameter G in adverse-pressure- 
gradient layers over a step does not appear to give the simple description of the 
departure and return to equilibrium conditions that it gives in zero-pressure- 
gradient layers. Variation of G with ,8 for the present layers would suggest that 
they continue to develop with local self-preservation throughout the initial 
relaxation process after the step. It is probably more accurate to conclude that 
the single profile parameter G cannot distinguish between a layer developing in 
local self-preservation and a layer relaxing after a severe wall perturbation 
in which dpldx remains positive. A layer in which G remains constant during 
development (a Clauser equilibrium layer) is probably the only pressure- 
gradient case in which a perturbation will cause a variation in G which can be 
related with certainty to the departure from, and return to, self-preserving flow. 

(iii) The limited experimental data suggest that profiles having identical 
defect shapes are produced in adverse-pressure-gradient layers at positions 
where the values of Clauser’s parameter p are similar, provided that the pressure- 
gradient history and local values of the pressure gradient are also similar. It is 
possible that only one of these additional restraints is necessary. However the 
data were inadequate to separate the effects of the two parameters. 

The measurements for this paper were taken in the University of Melbourne’s 
wind tunnel. The author wishes to thank Professor P. N. Joubert and Dr. A. E. 
Perry for their assistance. 
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